
Long paths and cycles in subgraphs of the cube

Eoin Long∗

Abstract

Let Qn denote the graph of the n-dimensional cube with vertex set
{0, 1}n in which two vertices are adjacent if they differ in exactly one
coordinate. Suppose G is a subgraph of Qn with average degree at least
d. How long a path can we guarantee to find in G?

Our aim in this paper is to show that G must contain an exponentially
long path. In fact, we show that if G has minimum degree at least d then
G must contain a path of length 2d − 1. Note that this bound is tight,
as shown by a d-dimensional subcube of Qn. We also obtain the slightly
stronger result that G must contain a cycle of length at least 2d.

1 Introduction

Given a graph G of average degree at least d, a classical result of Dirac [4]
guarantees a path of length d in G. Moreover, this bound is best possible as
can be seen from Kd+1.

Inside the cube Qn can we improve this bound? That is, given a subgraph
G of Qn with average degree at least d, what is the length of the longest path
in G? The edge isoperimetric inequality for the cube ([1], [5], [6], [7], see [2] for
background) says that any subgraph of average degree at least d must have size
at least 2d. In light of this, the above linear bound seems very weak. A natural
subgraph of Qn with average degree at least d is the d-dimensional cube Qd, the
analogue of the complete graph in Qn, which contains a path of length 2d − 1.
Must the size of the longest path in G also be exponential?

The main result of this paper answers this question in the affirmative.

Theorem 1.1. Every subgraph G of Qn with minimum degree d contains a path
of length 2d − 1.

Note that this is best possible as shown by a d-dimensional subcube of Qn.
In fact, the proof of Theorem 1.1 shows that we can always find a longer path
in G unless it is isomorphic to Qd. Using the well known fact that every graph
with average degree at least d contains a subgraph with minimum degree at
least d

2 we obtain the following corollary to Theorem 1.1.

Corollary 1.2. Every subgraph G of Qn with average degree at least d contains
a path of length at least 2

d
2 − 1.
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We do not know a tight bound for average degree d. We also obtain the
corresponding result for the length of the longest cycle in subgraphs of Qn with
large minimum degree.

Theorem 1.3. Every subgraph G of Qn with minimum degree d contains a
cycle of length at least 2d.

In Section 2 we give an overview of the proofs of Theorems 1.1 and 1.3. The
theorems themselves are then proved in Sections 3-7.

In Section 8 we show that the lower bound from Theorems 1.1 and 1.3
also extends to subgraphs of the grid graph Zn and the discrete torus Cn

k , for
all k ≥ 4. We also give a generalization of Theorems 1.1 and 1.3 to general
‘product-type’ graphs in the following form:

Theorem 1.4. Let k ∈ N. Suppose G is a graph with minimum degree at least
d and that G has the following property:

Given any two vertices x, y ∈ G, there is a partition of V (G) into two
sets X and Y with x ∈ X and y ∈ Y such that dG[X](v) ≥ d(v)− k
for all v ∈ X and dG[Y ](v) ≥ d(v)− k for all v ∈ Y .

Then G contains a path of length at least 2
d

k+2 .

In Section 8 we also give some consequences of this theorem and make some
conjectures.

2 Overview

As in the statement of Theorem 1.1, let G be a subgraph of Qn with δ(G) ≥ d.
We will view the vertices of Qn as elements of the power set of [n], P[n].

A plausible approach to proving Theorem 1.1 is to split G along some direc-
tion i to obtain two induced subgraphs G1 and G2 consisting of those vertices of
G respectively containing and not containing i, for some i ∈ [n]. Provided such
a direction is chosen to ensure that G1, G2 ̸= ∅, we have δ(G1), δ(G2) ≥ d − 1
and by induction on Theorem 1.1 we have a path of length 2d−1 − 1 in each
subgraph. If we could join these two paths into one we would clearly be done.
However, as Theorem 1.1 provides no information on where these paths start or
end, we can not expect to be able to do this.

This suggests that we strengthen Theorem 1.1 to guarantee an exponentially
long path between any two vertices x and y of G. In general this is not possible
– for example, consider the graph G′ obtained by removing all but one edge xy
of direction d+ 1 from the (d+ 1)-dimensional cube Qd+1.

However this graph is not 2-connected. The following theorem says that this
is the only obstruction to such a strengthening.

Theorem 2.1. Let G be a 2-connected subgraph of Qn and a and b be distinct
vertices of G. Suppose that dG(z) ≥ d for all z ∈ G− {a, b}. Then G contains
an a− b path of length at least 2d − 2. Furthermore, unless G is isomorphic to
Qd with a and b at even Hamming distance, G contains an a− b path of length
at least 2d − 1.
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Note that we do not assume that a or b have degree at least d in Theorem
2.1. This slight weakening of the minimum degree condition will allow us to use
induction on various subgraphs of G which would otherwise not be available.

Before continuing with the overview we make a small diversion to introduce
some definitions: these are standard (e.g. see [3]).

A subgraph B of a graph G is a block of G if B is either a bridge of G or
forms a maximal 2-connected subgraph of G. By maximality, |B1 ∩B2| ≤ 1 for
any two blocks B1 and B2 of G and G−E(B) contains no x− y path between
distinct vertices x, y in a block B. Therefore if any two blocks intersect, their
common vertex must be a cutvertex and conversely every cutvertex lies in at
least two blocks. Since every cycle is 2-connected and an edge is a bridge iff
it does not lie in any cycle, every graph G decomposes uniquely into its blocks
B1, . . . , Bp in the sense that:

E(G) =

p∪
i=1

E(Bi) and E(Bi) ∩ E(Bj) = ∅ if i ̸= j.

Suppose now that G is connected. Let B(G), the block-cutvertex graph of G,
be the bipartite graph with bipartition (B, C) where B is the set of blocks of G,
C is the set of cutvertices of G with Bc an edge if c ∈ B. For a connected graph
G, B(G) is a tree.

The leaves of this tree are all elements of B and are called endblocks. Given
an endblock E we will denote its unique cutvertex by cutv(E). Note that a
graph G has only one endblock iff it is 2-connected.

We now return to the overview of the proof of Theorem 2.1.

Lemma 2.2. Let G be a connected subgraph of Qn with a and b distinct vertices
of G. Then there exists a partition of G into two connected subgraphs Ga and
Gb such that a ∈ Ga, b ∈ Gb and for all v ∈ Gc, dGc(v) ≥ dG(v) − 1, where
c ∈ {a, b}.

Proof. Picking i ∈ [n] such that a and b differ in coordinate i and forming
G1 and G2 as before, we have a ∈ G1 and b ∈ G2. Let Cb be the connected
component of G2 containing b. Taking Ga to be the connected component of
G− Cb containing a and Gb = G−Ga we are done.

We will refer to i in the above proof as the splitting direction for Ga and Gb.
A central observation in the proof of Theorem 2.1 is that, provided d ≥ 3,

given any endblock E of Ga with a /∈ E, by induction on Theorem 2.1, E
contains a path of length at least 2d−1−2 from cutv(E) to any y ∈ E−cutv(E)
– d ≥ 3 here guarantees E is 2-connected and not a bridge. Since G is 2-
connected there must exist y ∈ E−cutv(E) with a neighbour in Gb. Thus these
endblocks guarantee ‘endblock paths’ of length at least 2d−1 − 1 from a point
in Ga to one in Gb. If we could find a path from a to b containing at least two
such endblock paths we would almost have our path (it may still be short two
or three vertices to give the 2d − 2 or 2d − 1 bound).

For ease of exposition we will prove the following weakening of Theorem
2.1 first. It will allow the reader to focus on the main ideas in the proof of
Theorem 2.1 without some distracting details necessary to ensure that an a− b
path formed from endblock paths is not slightly too short.
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Theorem 2.3. Let G be a 2-connected subgraph of Qn and a, b ∈ V (G). Suppose
that dG(z) ≥ d for all z ∈ V (G) − {a, b}. Then G contains an a − b path of
length at least 2d−1.

Another technicality that arises in the proof of Theorem 2.1 and 2.3 is the
possibility that the only choice of a splitting direction i for Ga and Gb in Lemma
2.2 above, leaves a with just one neighbour in Ga or b with just one neighbour
in Gb. While all cases can be dealt with simultaneously, we felt for clarity’s sake
it was easier to first restrict attention to the case where a splitting direction i
exists for Ga and Gb in which dGa(a) ≥ 2 and dGb

(b) ≥ 2.

Theorem 2.3 is proved in Sections 3-6. Sections 3-5 will focus on the case
where we can find a partition direction i, such that dGa(a) ≥ 2 and dGb

(b) ≥ 2.
Section 3 will describe the block-cutvertex decomposition structure of Ga and
Gb in the absence of an a − b path of length 2d−1 formed by joining at least
two endblock paths together, and Section 4 describes how the endblocks of Ga

interact with those of Gb. In Section 5 we show that if G does not contain a
path from a to b containing at least two endblock paths then the conditions of
Theorem 2.3 hold for a smaller subgraph of G. This allows for an inductive step
and completes the proof of Theorem 2.3 in this case.

Section 6 will allow us, using a small modification of the argument from
Sections 3-5, to extend from the case dGa(a) ≥ 2 and dGb

(b) ≥ 2 to the general
case, proving Theorem 2.3.

Finally in Section 7 we show how to adjust the approach in Sections 3-6 to
obtain the optimal bound of Theorem 2.1.

To close this section we show that Theorem 2.1 implies Theorem 1.3.

Proof of Theorem 1.3: Take an endblock E in the block-cutvertex decomposition
of G. Clearly E is 2-connected and all vertices in E − cutv(E) have at least d
neighbours in E. Pick a neighbour v of cutv(E) in E. Then by Theorem 2.1 G
contains a cutv(E)− v path P of length at least 2d − 1. Combining P with the
edge cutv(E)v we obtain the desired cycle. �

3 Endblocks in Ga and Gb

To begin we introduce some useful definitions.

Definition 3.1. Let E be an endblock in the block-cutvertex decomposition
of Ga (Gb). The interior of E is the set int(E) = E − cutv(E). A vertex
x ∈ int(E) is said to be an exit vertex of E if x has a neighbour in Gb (Ga). If
this neighbour exists, it is unique and is denoted by p(x), x’s partner.

Definition 3.2. Body(a) is the intersection of all blocks of Ga containing a.
Let Core(a) consist of those vertices in Body(a) that are not cutvertices of Ga.

Definition 3.3. A subgraph K of Ga is said to be a limb of a if:

• a is a cutvertex of Ga and K = G[C ∪ {a}] where C is a connected
component of Ga − a

• a is not a cutvertex of Ga and K = G[C] where C is a connected compo-
nent of Ga − Core(a).
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L

Ga Gb

b

Body(a)
a

cutv(E)

E

cutv(F )

x

Joint(K)

K
p(x)

F

Figure 1: The diagram displays various parts of Ga and Gb. The broken line
separates Ga and Gb. In Ga, Body(a) ̸= {a} and a has three limbs. In Gb, b is
a cutvertex and one of its limbs L contains an endblock F with exit vertex x.

The joint of a limb K, Joint(K), is the unique vertex v ∈ K ∩ Body(a).

The reader may find it helpful to examine Figure 1. The circles and ellipses
will always denote blocks in the block-cutvertex decomposition of the graph.

The proof of Theorem 2.3 will proceed by induction on d. The case d = 2
follows from Menger’s theorem, as if G is 2-connected it contains two disjoint
a − b paths, one of which must have length at least 2. We will suppose for
contradiction that the Theorem fails for some d > 2 and take G to be a minimal
counterexample so that Theorem 2.3 holds for all smaller degrees and all graphs
G′ with |G′| < |G|. The following lemma will be the main step in the proof of
Theorem 2.3. Its proof will be the aim of the next three sections.

Lemma 3.4. Let G be a 2-connected subgraph of Qn and a, b ∈ V (G) such that
d(v) ≥ d for all v ∈ V (G) − {a, b}, where d ≥ 3. Suppose that Theorem 2.3 is
true for smaller degrees and all graphs G′ with |G′| < |G|. Suppose furthermore
that there exists a splitting direction i for Ga and Gb in Lemma 2.2 for which
dGa(a) ≥ 2 and dGb

(b) ≥ 2. Then G contains an a − b path of length at least
2d−1.

Note that it follows from Lemma 3.4 that if dG(a) ≥ 3 and dG(b) ≥ 3, G
contains an a − b path of length at least 2d−1. Indeed, taking any direction i
on which a and b differ as the splitting direction in the proof of Lemma 2.2,
we have dGa(a) ≥ 2 and dGb

(b) ≥ 2. Lemma 3.4 therefore applies and gives an
a− b path of length at least 2d−1, as claimed.

Over the next three sections we will establish some results which will be used
in the proof of Lemma 3.4 in Section 5. The first of these describes the block
structure of Ga provided we cannot use endblock paths to form an a − b path
of length at least 2d−1.

Lemma 3.5. Suppose that G, a, b,Ga and Gb are as in the statement of Lemma
3.4. If G does not contain an a−b path of length at least 2d−1 then the following
hold:

(i) Every endblock of Ga which does not contain a in its interior must contain
at least two exit vertices.
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Ga

a

p(x)

E
x

b

Gb
P2E Gb

b
P3

Ga

P1

cutv(E)

a

Figure 2: Path P constructed in Lemma 3.5(ii). Curved paths like P1 and P2

will represent endblock paths of length at least 2d−2 throughout.

(ii) Ga is not 2-connected.

(iii) a does not lie in the interior of an endblock in Ga.

(iv) a must have at least two limbs.

Proof. (i) Suppose not and let E be such an endblock. By the 2-connectivity
of G, E must contain an exit vertex x. If x is its only exit vertex then every
v ∈ E − {cutv(E), x} has degree least d in E – such v must exist since d ≥ 3.
Since |E| < |G|, E contains a path P2 of length at least 2d−1 from cutv(E) to
x. Joining a to cutv(E) in Ga by a path P1 and p(x) to b in Gb by a path P3 we
have created a path P1P2P3 of length at least 2d−1 from a to b, a contradiction.

(ii) Suppose Ga is 2-connected. First consider the case where Gb is not 2-
connected. Let E be an endblock in Gb not containing b in its interior and take
x to be an exit vertex of E with p(x) ̸= a – this exists by (i). Since Theorem
2.3 holds for d− 1, there are paths P1 in Ga from a to p(x) and P2 in E from x
to cutv(E) both of length at least 2d−2. Taking a path P3 from cutv(E) to b in
Gb we have constructed a path P = P1p(x)xP2P3 from a to b of length at least
2d−1, a contradiction.

IfGb is 2-connected, then the same proof as in (i) shows that Gb must contain
two exit vertices, one of which, x, has x ̸= b and p(x) ̸= a. Again as Theorem
2.3 holds for d − 1, we obtain endblock paths from a to p(x) in Ga and from
x to b in Gb both of length at least 2d−2. Joining the two with edge xp(x), G
again contains an a− b path of length at least 2d−1, a contradiction.

(iii) Suppose a lies in the interior of an endblock E of Ga. As dGa(a) ≥ 2 E
is 2-connected. As Theorem 2.3 holds for d − 1, we have an endblock path P1

from a to cutv(E) in E of length at least 2d−2. From (ii) Ga is not 2-connected
and so it contains a second endblock E′, with an exit vertex x. Again since
Theorem 2.3 holds for d− 1, E′ contains an endblock path P3 from cutv(E′) to
x of length 2d−2. Join cutv(E) to cutv(E′) by a path P2 in Ga and p(x) to b by
a path P4 in Gb. Combining all of these paths we have a path P1P2P3xp(x)P4

from a to b of length at least 2d−1, a contradiction.
(iv) This follows from (ii) and (iii) as if Ga is not 2-connected and a does

not lie in the interior of any endblock, a must have at least two limbs.

Note that by symmetry of a and b, Lemma 3.5 also applies on replacing a
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with b. The next proposition gives a simple case in which we can use endblock
paths to build our path of length 2d−1 from a to b.

Proposition 3.6. Let G, a, b,Ga and Gb be as in the statement of Lemma 3.4.
Suppose G does not contain an a− b path of length at least 2d−1. Then for any
exit vertex x of an endblock E of Ga, p(x) can never lie in the interior of an
endblock F of Gb.

Proof. From Lemma 3.5(iii) a /∈ int(E) and b /∈ int(F ). Pick a path P1 in Ga

from a to cutv(E) and a path P4 in Gb from cutv(F ) to b. Since E is 2-connected
and all v ∈ E − {cutv(E), x} have degree at least d − 1 in G[E], Theorem 2.3
gives a path P2 of length at least 2d−2 from cutv(E) to x. Similarly F contains
a path P3 of length at least 2d−2 from p(x) to cutv(F ). Combining these gives
an a− b path P = P1P2xp(x)P3P4 of length at least 2d−1, a contradiction.

4 The Interaction Digraph

Throughout this section, G will be a 2-connected subgraph of Qn containing
vertices a and b, with dGa(a) ≥ 2, dGa(a) ≥ 2 and d(v) ≥ d for all v ∈ V (G)−
{a, b}. We will also assume that Theorem 2.3 holds for all smaller degrees and
for all graphs G′ with |G′| < |G|.

Let K1, . . . ,Kr be the limbs of a and L1, . . . , Ls be the limbs of b. Lemma
3.5(iv) shows that r, s ≥ 2.

We form an auxiliary bipartite multidigraph H = (A,B,
−→
E ) which will

represent the interaction between the limbs and cores of a and b. Let A =
{K1, . . . ,Kr} and B = {L1, . . . , Ls}. Additionally, adjoin Core(a) to A and
Core(b) to B if they are non-empty. Given an endblock E of Ga, there exists an
exit vertex x with x ̸= a and p(x) ̸= b by Lemma 3.5(i) and (iii). Pick exactly
one such exit vertex xE for each such endblock E and adjoin a directed edge to
H from K to W ∈ B where E is contained in limb K and p(xE) ∈W . Similarly,
for each endblock F in L we pick an exit vertex yF ∈ F with p(yF ) ̸= a and
add a directed edge to H from L to V where p(yF ) ∈ V .

Note that by Proposition 3.6 we never choose an exit vertex xE for some E
and yF for some F such that p(xE) = yF . Also, since any limb of a or b contains
an endblock, every limb vertex in H must have outdegree at least one and core
vertices have no outneighbours.

We shall study the component structure of H. The next two lemmas say
that this is very restricted. Together they will allow us to find a connected
component C of H consisting entirely of limbs. The inductive step in Section 5
will take place on the subgraph of G corresponding to this C.

As H is a multidigraph, we stress that in the next lemma, by a path we
mean a path without repeated vertices.

Lemma 4.1. Let G, a, b,Ga and Gb be as above. Suppose G does not contain
an a − b path of length at least 2d−1. Then H does not contain an undirected
path of length three.

Proof. Suppose for contradiction that we have such a path Q = V0V1V2V3 in H

and assume V0 ∈ A. Each directed edge
−−→
VW of Q gives an endblock in V with

exit vertex x, such that p(x) ̸= b and p(x) ∈ W . These endblocks are distinct

7



by the construction of H and since Theorem 2.3 holds for d − 1, in each we
can find an endblock path of length at least 2d−2 from its cutvertex to this exit
vertex. We claim that we can form an a− b path P which extends all three of
these paths. As such a path has length at least 3(2d−2) > 2d−1, this contradicts
the hypothesis and proves the lemma.

We will construct our path by forming paths Pi in each Vi and eventually
join them into one. The start point of Pi will be denoted by ai and its end point
by bi. We first choose these vertices.

If
−−−−→
ViVi+1 is an edge of Q there is an endblock E in Vi with an exit vertex xE

such that p(xE) ∈ Vi+1. In this case let bi = xE and ai+1 = p(xE). If
←−−−−
ViVi+1 is

an edge of Q this gives an endblock E in Vi+1 with an exit vertex xE such that
p(xE) ∈ Vi. In this case let bi = p(xE) and ai+1 = xE . We set

a0 =

{
Joint(V0) if V0 is a limb of a;
b0 if V0 =Core(a)

b3 =

{
Joint(V3) if V3 is a limb of b;
a3 if V3 =Core(b).

Note that bi and ai+1 are adjacent for i ∈ {0, 1, 2} and a, b /∈ {b0, a1, b1, a2, b2, a3}.
We now build the paths Pi from ai to bi in each Vi, where Vi is a limb. We

claim we can choose Pi so that neither a nor b are interior vertices of Pi (that is,
they can lie on Pi, but only as end vertices) such that Pi has length at least 2d−2

if Vi has one outneighbour on Q and 2d−1 if Vi has two outneighbours on Q.
Indeed, if Vi has exactly one outneighbour in Q then exactly one of ai or bi must
be an exit vertex of an endblock E of Vi. Without loss of generality this is ai.
We must also have bi /∈ int(E). Indeed, by definition b3 never lies in the interior
of an endblock, so i ≤ 2 and ai+1 must be an exit vertex for a endblock in Vi+1.
But as bi and ai+1 are adjacent, this contradicts Propostion 3.6. Therefore,
since Theorem 2.3 holds for d − 1, E contains a path of length 2d−2 from ai
to the cutv(E). Since Vi − {a, b} is connected for all i from the definition of a
limb, we can extend this path from cutv(E) to bi in Vi as required. The case
where Vi has two outneighbours in Q is identical, using the same argument in
two endblocks of Vi and joining their cutvertices in Vi.

Finally we combine the Pi paths. We first deal with the case where neither
Core(a) nor Core(b) occur as interior vertices of Q. Combining the paths above
we have an a0−b3 path P ′ = P0b0a1P1b1a2P2b2a3P3. If Body(a) = {a} then P ′

starts at a so we only need to extend P ′ to start at a when Body(a) ̸= {a}. In P ′

as constructed above, Body(a) ∩ P ′ contains a0 and at most one other vertex -
indeed as the paths Pi above always lie entirely inside Vi, they can only intersect
Body(a) in Joint(Vi) and therefore P ′ contains at most a0 and Joint(V2). Since
Body(a) is 2-connected it contains a path P ′

1 from a to a0 avoiding Joint(V2).
Finding a similar path P ′

2 from b3 to b in Body(b) if Body(b) ̸= {b} we may take
P = P ′

1P
′P ′

2.
If Q contains one of the Core vertices, without loss of generality let it be

Core(a). If Core(a) occurs as an interior vertex of Q, it must be V2. Body(a)
then contains distinct a0, a2, b2 and we have two paths P ′

1 = P0b0a1P1b1a2 from
a0 to a2 and P ′

2 = b2a3P3 from b2 to b3 as in Figure 3. From the choice of the
a2 and b2 above and the fact that a is not a cutvertex we have a /∈ {a0, a2, b2}.
Therefore by 2-connectivity Body(a) contains two vertex disjoint paths from
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Gb

V3 V1

V2

V0

a

b

Ga

P0

a

Gb

a2

Ga

a1

P3

a0
b2

ba3

P1

b0

b1

Figure 3: An illustration of Lemma 4.1 in the case where V2 = Core(a) and
V0V1, V1V2 and V3V2 are directed edges of Q. As in the proof of Lemma 4.1,
2-connectivity can be used in Body(a) to find vertex disjoint paths from {a0, a2}
to {b, b2}.

{a0, a2} to {a, b2}. Piecing these paths together with P ′
1 and P ′

2 we obtain an
ab3-path P ′. If Body(b) = {b} we are done since b = b3. Otherwise we extend
P ′ using 2-connectivity as above to find an a − b path of length at least 2d−1,
contradicting the choice of G.

Note that Lemma 4.1 guarantees that H has at least two connected com-
ponents. The next lemma further limits H. Its proof is very similar to that of
Lemma 4.1.

Lemma 4.2. Let G, a, b,Ga and Gb be as above. Suppose that G does not con-
tain an a− b path of length at least 2d−1. Furthermore, suppose that Body(a) ̸=
{a}. Then no component of H contains two vertices of A.

Proof. Suppose H has such a component C. Then, since H does not contain a
path of length three by Lemma 4.1, C consists of vertices V1, . . . , Vt in A and a
vertex W in B. At most one of V1, . . . , Vt,W can be a core vertex as there is
no edge between Core(a) and Core(b) in H.

IfW = Core(b) then V1 and V2 must be limbs and these guarantee two vertex
disjoint paths P1, P2 from vertices a1, a2 ∈ Body(a) to vertices b1, b2 ∈ Body(b)
both of length at least 2d−2 with |Pi∩Body(c)| = 1 for i = 1, 2 and c ∈ {a, b}. As
b has at least two limbs by Lemma 3.5(iv) and by Lemma 4.1 C cannot contain
both of these, H must contain a second component C ′ containing a limb of b.
This guarantees the existence of a third path P3 from a vertex a3 ∈ Body(a) to
b3 ∈ Body(b) of length 2d−2 again with |P3 ∩ Body(c)| = 1 for c ∈ {a, b} which
is disjoint from P1 and P2. Using identical 2-connectivity arguments in both
Body(a) and Body(b) as in Lemma 4.1 we can combine these three paths into
one from a to b, contradicting the hypothesis.

If W ̸= Core(b) then C guarantees a path P1 of length 2d−1 between two
vertices a1 and a2 in Body(a) with |P1 ∩ Body(a)| = 2, b /∈ P1 ∩ Body(b)
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and |P1 ∩ Body(b)| ≤ 1. Again from a second connected component of H
we obtain a disjoint path P2 from an element a3 ∈ Body(a) to b1 ∈ Body(b)
with |P2 ∩ Body(c)| ≤ 1 for c ∈ {a, b}. Once more, with an application of 2-
connectivity in Body(a) and a possible application in Body(b) we find an a− b
path extending both P1 and P2, a contradiction.

Again the same applies switching a with b. As mentioned before Lemma
4.1 the previous two lemmas imply that H contains a connected component C
consisting entirely of limbs.

Corollary 4.3. Let G, a, b,Ga and Gb be as above. Suppose that G does not
contain an a− b path of length 2d−1. Then the interaction digraph H of G has
at least two connected components, one of which C consists entirely of limbs.

Proof. Since |A|, |B| ≥ 2, if H is connected it contains an undirected path of
length three, contradicting Lemma 4.1. Therefore H has at least two connected
components, as claimed. If H does not contain a component consisting entirely
of limbs, each component of H contains one of Core(a) or Core(b). But then
H has exactly two connected components, one containing Core(a) and one con-
taining Core(b). But as A contains Core(a) and at least two limbs, two of these
must lie in the same connected component of H, contradicting Lemma 4.2.

We will write GC for the subgraph G[∪W∈CV (W )] of G. We note that GC

must contain exactly one vertex aC in Body(a) and one vertex bC in Body(b) –
if Body(a) = {a} then aC = a, if not then by Lemma 4.2 A ∩ C = {V } and we
may take aC = Joint(V ).

5 The Inductive Step

Suppose that G, a, b,Ga and Gb satisfy the hypothesis of Lemma 3.4 but G does
not contain a path of length 2d−1. Then we may apply Corollary 4.3 to find a
component C ofH consisting entirely of limbs. Our final lemma before the proof
of Lemma 3.4 finds a subgraph of GC which either also satisfies the conditions
of Theorem 2.3 or builds half of the a− b path we are looking for from any edge
entering it. Before stating it we give one last definition.

Definition 5.1. Given a graph G and S ⊂ V (G) define the spanG(S) to be
the subset of V (G) consisting of all vertices which lie on a path between two
elements of S.

Note that we include paths of length zero in this definition, so that S ⊂
spanG(S).

Lemma 5.2. Let G be a 2-connected subgraph of Qn containing vertices a and
b such that dGa

(a) ≥ 2, dGb
(b) ≥ 2 and d(v) ≥ d for all v ∈ V (G) − {a, b}.

Suppose that Theorem 2.3 holds for all smaller degrees and for all graphs G′

with |G′| < |G|. Suppose furthermore that G does not contain an a− b path of
length at least 2d−1. Then taking C as in Corollary 4.3, GC has a 2-connected
subgraph J containing two vertices a′ ∈ Ga and b′ ∈ Gb with the following
properties:

(i) every vertex v ∈ J − {a′, b′} has degree at least d − 1 in J and all the
neighbours of v in GC are contained in J .
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(ii) for any vertex v ∈ J − {a′, b′}, J contains an a′ − v path not containing b
and a b′ − v path not containing a, both of length at least 2d−2.

Proof. From Lemma 4.1, C cannot contain two limbs of both a and b. We may
therefore assume that C consists of one limb K of a and limbs L1, . . . , Lt of b.

For each i ∈ [t] we define Si ⊂ K and Ti ⊂ Li as follows:

Si := {v ∈ K : v has a neighbour p(v) ∈ Li − {b}}
and

Ti := {w ∈ Li : w has a neighbour p(w) ∈ K − {a}}.
Now each limb in the interaction digraph has at least one outneighbour. We

claim that for each endblock E ∈ K there exists some i ∈ [t] with |Si| ≥ 2 such
that int(E) ∩ Si ̸= ∅. Indeed, from construction of the interaction graph, E
contributes a directed edge from K to Li for some i ∈ [t]. This gives an exit
vertex xE ∈ int(E) with p(xE) ∈ Li − {b}. Similarly we have an exit vertex
y of an endblock in Li with p(y) ∈ K − {a}. Now by Proposition 3.6 we have
xE ̸= p(y) and both are contained in Si, proving the claim.

Assume that L1, . . . , Lt are labelled so that for i ∈ [1, t′], |Si| ≥ 2 and
|Si| = 1 for i ∈ [t′ + 1, t]. By the previous paragraph we have t′ ≥ 1. For all
I ⊂ [t] we let SI =

∪
i∈I Si.

Beginning with the {S1, . . . , St′}, repeatedly replace sets SI and SJ in this
list with SI∪J if |spanGa

(SI)∩ spanGa
(SJ )| ≥ 2. When this proceedure ends we

are left with sets {SI1 , . . . , SIp}.
Now clearly spanGa

(SIl) is a union of blocks of K for all l ∈ [p] and by
our construction proceedure above, no two can share a block. Also from the
claim above, each endblock E of K is contained in spanGa

(SIl) for some l ∈ [p].
Combining these two facts it is easy to see that there is some l ∈ [p] for which
spanGa

(SIl) is separated from Ga − spanGa
(SIl) in Ga by a single vertex a′.

We are now ready to choose J . Let N ⊂ [t′ + 1, t] consist of all n for
which Sn ∩ (spanGa

(SIl) − {a′}) ̸= ∅ and let M = Il ∪ N . We take J =
G[spanGa

(SM ) ∪ spanGb
(TM )].

Lastly we choose b′. We pick this vertex depending on whether |M | = 1
or |M | ≥ 2. If |M | = 1 then Il = {i} for some i ∈ [t′] and N = ∅. Since
Gb[spanGb

(Ti)] is a connected union of blocks of Li and contains a vertex in
the interior of every endblock of Li, this graph must be separated from Gb −
Gb[spanGb

(Ti)] by a single vertex b′ in Gb.
If |M | ≥ 2 then as C contains at least two limbs of b, by Lemma 4.2

Body(b) = {b}. Then J = G[spanGa
(SM ) ∪ (

∪
j∈M V (Lj))] and we may take

b′ = b.
It is clear from construction that J satisfies (i). It is also easy to show that

J is 2-connected. Indeed, suppose we remove v ∈ J ∩ Ga. Given any vertex
w ∈ J ∩ Ga − {v}, w ∈ G[spanGa

(SIl)] so either w ∈ SIl or w lies on a path
between two elements of SIl . In both cases there exists a path from w to J ∩Gb.
Since J ∩Gb is connected this shows that J − v is connected for all v ∈ J ∩Ga.
A similar argument shows that J − v is connected for all v ∈ J ∩Gb.

We now show that (ii) holds for J . Suppose that v ∈ J − {a′, b′} and that
we are looking for an a′ − v path not containing b of length at least 2d−2. We
claim the following:

Claim 1: J − b contains a 2-connected subgraph J ′ containing all of J ∩Ga.
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If b /∈ J then this is immediate taking J ′ = J , so we may assume that b = b′ ∈
J . It suffices to show that there exists such a subgraph J ′ of G[spanGa

(SIl) ∪
spanGb

(TIl)].
For each i ∈ [t′], G[spanGa

(Si)∪spanGb
(Ti)]−{b} has a 2-connected subgraph

which contains all of spanGa
(Si), namely G[spanGa

(Si) ∪ spanGb
(p(Si))] − {b}

where p(Si) := {p(s) : s ∈ Si}. Here |Si| ≥ 2 guarantees that this graph is
2-connected. Now since the union of two 2-connected graphs which intersect
at least two points is still a 2-connected graph, from the joining proceedure
which produced the set Il we must have that the union of G[spanGa

(Si) ∪
spanGb

(p(Si))]− {b} for i ∈ Il is a 2-connected graph J ′. Moreover, this graph
clearly contains all of G[spanGa

(SIl)] = J ∩Ga. This proves the claim.
We now use J ′ to find the a′ − v path claimed in (ii). First find a path P1

from v to some w ∈ J ′ − a′ which avoids b. Such a path is immediate if v ∈ J ′,
so we may assume v /∈ J ′. Let v ∈ Li, i ∈ M . If Li − b contains some element
of J ′, take P1 to be the shortest path in Li − b from v to an element w in J ′.
If not, we take P ′

1 to be a path in Li − b to an exit vertex xF of some endblock
F of Li, p(xF ) = w and P1 = P ′

1xF p(xF ). Note that in both these cases P1

intersects J ′ only in one vertex w ̸= a′.
Now take an endblock E of J ∩Ga. If w ∈ int(E) then Ga contains a path

from w to a′ which extends an endblock path in E. As such a path has length
at least 2d−2 we can assume w /∈ int(E). Let J ′′ denote the graph J ′ with
int(E) contracted to a single vertex e. It is easy to see that this graph is still
2-connected. Therefore there exists two vertex disjoint paths P2 and P3 from
{a′, w} to {cutv(E), e}. Say that these paths are P2 from a′ to cutv(E) and P3

from w to e. If P3 = P ′
3xe, x must have a partner p(x) ∈ int(E). This gives a

path P ′
3xp(x) from w to p(x) in J . Now since E is a 2-connected graph and for

all v ∈ E − {cutv(E), p(x)} dE(v) ≥ d − 1, we can apply Theorem 2.3 to E to
find a p(x) − cutv(E) path P4 of length at least 2d−2. Combining all of these

paths gives a v − a′ path P = P1P
′
3xp(x)P4P

(r)
2 of length at least 2d−2, where

P
(r)
2 is P2 reversed.
An identical argument gives the b′ − v path claimed in (ii).

We are now ready to prove Lemma 3.4.

Proof of Lemma 3.4. Suppose for contradiction that G does not contain an a−b
path of length at least 2d−1. Then by Corollary 4.3, the interaction digraph H
of G must contain a connected component C consisting entirely of limbs.

As G does not contain an a − b path of length at least 2d−1, we can apply
Lemma 5.2 to find a 2-connected subgraph J of GC and vertices a′ and b′

which satisfy Lemma 5.2 (i) and (ii). Note that |J | < |G| since H contains two
connected components and J is contained entirely in one of them.

Now if there are no edges between J −{a′, b′} and G−J , all v ∈ J −{a′, b′}
have degree at least d in J . But then since |J | < |G|, J contains an a′− b′ path
P of length at least 2d−1. Extending this path from a′ to a and from b′ to b
gives an a − b path of length at least 2d−1, a contradiction. Therefore such an
edge must exist, joining say v ∈ J − {a′, b′} to w ∈ G − J . By Lemma 5.2 (i)
w /∈ GC . We may assume w ∈ Ga.

Suppose first that w ∈ Body(a). Here Body(a) ̸= {a} by Lemma 5.2 (i).
Take an a′ − v path of length 2d−2 in J as guaranteed by Lemma 5.2 (ii) which
does not contain b. This path extends in GC to an aC − v path P1, where
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Figure 4: An illustration of the case w ∈ int(E) in the proof of Lemma 3.4. The
broken dotted pieces represent vertices in GC that are left out of J .

aC = GC ∩ Body(a). As this path lies entirely in GC , it can only intersect
Body(a) in aC and Body(b) in at most bC = GC ∩Body(b). Pick a limb K of a
not contained in C and an endblock E of K. K contains a path of length 2d−2

from Joint(K) to the exit vertex xE of E. As p(xE) /∈ GC , we can find a path P2

from p(xE) to b in Gb disjoint from P1. But now since Body(a) is 2-connected
we can find vertex disjoint paths from {a, Joint(K)} to {aC , w}. Combining
these paths with P1 and P2 we obtain a path of length at least 2d−1 + 2 from a
to b, again a contradiction.

Therefore we can assume w ∈ K for some limb K of a not in C. If w /∈
int(E) for some endblock E of K then we can proceed exactly as in the case
w ∈ Body(a) above to find an a − b path of length at least 2d−1, so we may
assume w ∈ int(E). Then K contains a path of length at least 2d−2 from w
to Joint(K). Joining this path to the v − b′ path guaranteed by Lemma 5.2
(ii) via the edge wv we obtain a Joint(K)− b′ path of length at least 2d−1 + 1.
Extending this path from Joint(K) to a and from b′ to b we again find an a− b
path of length at least 2d−1+1. This contradicts our assumption and proves the
Lemma. �

6 Removing the Degree Assumption

Again, let G be a 2-connected subgraph of Qn with a, b ∈ G such that dG(v) ≥ d
for all v ∈ V (G) − {a, b}. Also, suppose that Theorem 2.3 holds for smaller
degrees and for all graphs G′ with |G′| < |G|.

If we could find a splitting direction i for Ga and Gb in Lemma 2.2 so that
dGa(a) ≥ 2 and dGb

(b) ≥ 2 then using Lemma 3.4 G would contain an a − b
path of desired length. This is possible if dG(a) ≥ 3 and dG(b) ≥ 3, so we may
assume that say dG(a) = 2. However, we can not guarantee this in general – for
example, a and b could be adjacent with both having only one other neighbour
in G.

Now the condition dGa(a) ≥ 2 and dGb
(b) ≥ 2 in previous sections ensured

that all endblocks of Ga and Gb contained long paths, which is false if say a has
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a single neighbour a′ in Ga. This fact was then used in Lemma 3.5 (iv) to show
that a has at least two limbs in Ga which in turn was crucially used numerous
times in our analysis of H e.g. Lemma 4.2.

In this section, we will extend the arguments from the proof of Lemma 3.4
to prove Theorem 2.3. The first step is the following lemma.

Lemma 6.1. Let G be a 2-connected subgraph of Qn with a, b ∈ G such that
dG(a) = 2 and dG(v) ≥ d for all v ∈ V (G)− {a, b}, where d ≥ 3. Suppose that
Theorem 2.3 holds for smaller degrees and for all graphs G′ with |G′| < |G|.
Furthermore, suppose that G does not contain an a − b path of length at least
2d−1. Then the following hold:

(i) G− a is a 2-connected graph

(ii) There is a splitting direction i for Ga and Gb so that dGa(a) ≥ 2 or
dGb

(b) ≥ 2.

Proof. (i) If G− a is not 2-connected, it has at least two endblocks in its block-
cutvertex decomposition, one of which E has b /∈ int(E). Now since G is 2-
connected, a must be joined to the interior of all the endblocks of G − a. As
dG(a) = 2, G−a has exactly two endblocks with a having exactly one neighbour
in the interior of each. Let w be this neighbour in E.

Now E is 2-connected (as d ≥ 3) and all vertices in E − {cutv(E), w} have
degree at least d in E. Since |E| < |G|, Theorem 2.3 applies to give a path P of
length at least 2d−1 from w to cutv(E). Extending this path on either side to a
and b respectively, we have an a−b path of length at least 2d−1, a contradiction.

(ii) We can always choose such a direction if a and b are at Hamming distance
at least three in Qn or if one of a or b have degree greater than 2 in G. So we
can assume a and b are at Hamming distance one or two and both have degree
exactly two in G.

First consider a and b at Hamming distance one. If they are not adjacent
in G we can choose the direction on which they differ for i so we can assume
they are adjacent. Then a and b both have one other neighbour in G, a′ and
b′ respectively. Now if G − {a, b} is 2-connected we can apply Theorem 2.3 to
G−{a, b} with a′ and b′ in place of a and b. This gives an a′− b′ path of length
at least 2d−1. Adjoining the edges aa′ and bb′ to this path we have an a − b
path of length 2d−1 + 2, more than enough. If G − {a, b} is not 2-connected
it is easily seen that a′ and b′ must lie in the interior of different endblocks of
G−{a, b}. We can therefore find a path from a′ to b′ in G−{a, b} which extends
two endblock paths. Adjoining the edges aa′ and bb′ to this path, we have an
a− b path of length at least 2d + 2, a contradiction.

If a and b are at Hamming distance two, we can always find such a direction
i unless a and b are joined to the same two neighbours in G, a′ and b′ say. Then
{a, a′, b, b′} form a C4 with a opposite b. Working with G− {a, b}, a′ and b′ as
above, we again obtain an a− b path of desired length in G.

We are now ready for the proof of Theorem 2.3.

Proof of Theorem 2.3. The proof is by induction on d and |G|. The base case
d = 2 follows from Menger’s theorem, as if G is 2-connected it contains two
disjoint a− b paths, one of which must have length at least 2.
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Suppose that G is as in the statement of the Theorem and that Theorem 2.3
holds for all smaller values of d and for all graphs G′ with |G′| < |G|. Suppose
for contradiction that G does not contain a a − b path of length at least 2d−1.
By Lemma 3.4, we must have that for all choices of i in Lemma 2.2 either
dGa(a) ≤ 1 or dGb

(b) ≤ 1.
Take the splitting direction i for Ga and Gb as in Lemma 6.1(ii). We will

assume without loss of generality that dGb
(b) ≥ 2. By the previous paragraph

we must have dGa(a) = 1. Let the neighbours of a be a′ ∈ Ga and v ∈ Gb.
Now we can assume v ̸= b. Otherwise, by Lemma 6.1(i), G−a is 2-connected

and as all v ∈ V (G− a)− {a′, b} have degree at least d in G− a, by induction,
G− a contains an a′ − b path of length at least 2d−1. Appending the edge aa′

to this path we obtain an a− b path of length at least 2d−1, a contradiction.
Lemma 3.5 (i)-(iv) still hold for Gb with the same proofs as before. In

particular, b still has at least two limbs. We make the following claim:

Claim 2: v ∈ int(Ev) for some endblock Ev of Gb

Suppose otherwise. From Lemma 3.5(iii) b does not lie in the interior of an
endblock of Gb and by Lemma 3.5(iv) Gb contains two vertex disjoint paths
P1 from v to cutv(E1) and P5 from cutv(E2) to b, where E1 and E2 are two
endblocks of Gb. Taking exit vertices x1 and x2 of E1 and E2 respectively, by
induction on d, E1 contains a path P2 of length at least 2d−2 from cutv(E1)
to x1 and E2 contains a path P4 of length at least 2d−2 from x2 to cutv(E2).
Taking a path P3 from p(x1) to p(x2) in Ga − a and combining the paths, G
contains an a − b path avP1P2x1p(x1)P3p(x2)x2P4P5 of length at least 2d−1.
This contradicts our assumption and proves the claim.

We now again construct an interaction digraph H but this time it is built
from the limbs of a′ and b instead of those of a and b. Note that {a, a′} is a limb

of a′ and so, both a′ and b have at least two limbs. Take H = (A′, B,
−→
E ) to be a

bipartite multidigraph on vertex sets A′ = {K1, . . . ,Kr} and B = {L1, . . . Ls},
the set of limbs of a′ and b respectively. We also adjoin Core(b) to B if it is
non-empty (Core(a′) = ∅ since a′ is a cutvertex of Ga). Now each endblock of
Ga other than {a, a′} contains at least two exit vertices, as in Lemma 3.5(i).
Therefore for each endblock E of Ga or Gb other than {a, a′} we can pick an
exit vertex xE with p(xE) ̸= a′, b. From our claim above we can pick xEv = v.
Now adjoin a directed edge from K ∈ A′ to L ∈ B for each endblock E in K
with p(xE) ∈ L and a directed edge from L ∈ B to K ∈ A′ for each endblock
E in L with p(xE) ∈ K. Note that every limb other than {a, a′} still has an
outneighbour in H.

For this H Lemma 4.1 and Lemma 4.2 still hold, again with the same proofs
as before. Using these two, as in Corollary 4.3, we can show that H contains
a connected component C consisting entirely of limbs which does not contain
the limb {a, a′}. Indeed, b has at least two limbs so pick one, L ∈ B, not
containing Ev and take C to be the connected component of H containing L.
As v is the unique neighbour of a in Gb and v /∈ L, if {a, a′} ∈ C then H would
contain a path of length three, contradicting Lemma 4.1. Furthermore, since
Core(a′) = ∅, if C did not consist entirely of limbs of a′ and b, Body(b) ̸= {b}
and C contains two vertices of B, contradicting Lemma 4.2.

The remainder of the proof of Theorem 2.3 is almost identical to that of
Lemma 3.4. We can apply Lemma 5.2 to find a subgraph J of GC . Using this
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subgraph as in the proof of Theorem 3.4 we either obtain an a′−b path of length
at least 2d−1 which is contained entirely in GC or an a′ − b path of length at
least 2d−1 + 1 in G. In the first case we find our a − b path by appending the
edge a′a the to a′ − b path. In the second case, unless a is already a vertex of
this path we can also do this. But if a a vertex of this a′− b path, it must occur
as the second vertex. Deleting a′ from the path, we obtain an a − b path of
length at least 2d−1, as required. �

7 A Tight Bound

In this section we will prove Theorem 2.1. Its proof has the same structure as
Theorem 2.3 but requires more care in various arguments. The proof will again
be by induction on d. The base case d = 2 is immediate unless a and b are
at Hamming distance 2 apart. If this is the case and G is not isomorphic to
Q2 pick any vertex v of G not in the unique 2-cube containing a and b. By
2-connectivity G contains vertex disjoint a − v and v − b paths, which when
combined give a path of length at least 3, as required.

We will suppose that the Theorem fails for some d > 2 and take G to be a
minimal counterexample so that Theorem 2.1 holds for all smaller degrees and
all graphs G′ with |G′| < |G|. To begin we will prove the analogue of Lemma
3.4.

Lemma 7.1. Let G be a 2-connected subgraph of Qn, not isomorphic to Qd

and let a, b ∈ V (G) such that d(v) ≥ d for all v ∈ V (G) − {a, b}, where d ≥ 3.
Suppose that Theorem 2.1 is true for smaller degrees and all graphs G′ with
|G′| < |G|. Suppose furthermore that there exists a splitting direction i for Ga

and Gb in Lemma 2.2 for which dGa(a) ≥ 2 and dGb
(b) ≥ 2. Then G contains

an a− b path of length at least 2d − 1.

Our first step in the proof of Lemma 7.1 is to establish the analogue of
Lemma 3.5.

Lemma 7.2. Let G, a, b,Ga and Gb be as in the statement of Lemma 7.1. If G
does not contain an a− b path of length at least 2d − 1 the following hold:

(i) Every endblock E of Ga which does not contain a in its interior contains at
least two exit vertices x and x′. Furthermore, we can choose these so that
E contains cutv(E)−x and cutv(E)−x′ paths of length at least 2d−1− 1.

(ii) Ga is not 2-connected.

(iii) a does not lie in the interior of an endblock in Ga.

(iv) a must have at least two limbs.

Proof. (i) Here the proof of Lemma 3.5(i) needs only a small change. If E is
isomorphic to Qd−1 we can choose any two neighbours of cutv(E) for x and x′,
so we may assume E is not isomorphic to Qd−1. Now G is 2-connected so E
contains at least one exit vertex x. Suppose for contradiction that this is the
only one. Then as E is 2-connected, not isomorphic to Qd−1 with dE(v) ≥ d
for all v ∈ E − {cutv(E), x} and |E| < |G|, it contains a cutv(E) − x path of
length at least 2d− 1. Extending this path as before we obtain an a− b path of
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length at least 2d− 1, a contradiction. Therefore E has two exit vertices and as
E is not isomorphic to Qd−1, E contains paths of length at least 2d−1 − 1 from
cutv(E) to both of them.

(ii) The change to the proof of the Lemma 3.5 (ii) in this case is a little more
involved. Suppose for contradiction that Ga is 2-connected.

First suppose that Gb is not 2-connected. If there exists an endblock E in Gb

such that b /∈ E, we have a path P1 in Gb of length at least 1 from b to cutv(E).
Pick an exit vertex x of E such that E contains a cutv(E)−x path P2 of length at
least 2d−1− 1 and p(x) ̸= a – this exists by (i). Combining the paths P1 and P2

above with the a−p(x) path of length 2d−1−2 in Ga guaranteed by Theorem 2.1,
G contains an a−b path of length at least 1+(2d−1−1)+1+(2d−1−2) = 2d−1, a
contradiction. So ifGb is not 2-connected bmust lie in every endblock E1, . . . , Et

of Gb. Note that since t ≥ 2 this implies b /∈ int(Ei) for any i.
Now using (i) as with E above, E1 must have an exit vertex x such that E1

contains a x − b path of length at least 2d−1 − 1, with p(x) ̸= a. If Ga were
not isomorphic to Qd−1, it contains a path of length 2d−1 − 1 from a to p(x).
Combining these two with the edge xp(x) we obtain an a − b path of length
2d − 1.

Therefore we can assume Ga is isomorphic to Qd−1. Then Ga contains a
path P3 of length at least 2d−1 − 1 from a to any of its neighbours. Take a
neigbhour x such that p(x) ̸= b. Here p(x) must be in int(Ei) for some i ∈ [t].
Now t ≥ 2 so Ei is not isomorphic to Qd−1 – otherwise Ga would receive too
many edges from Gb by (i) above. Since Theorem 2.1 holds for smaller degrees,
Ei contains a path P4 from b = cutv(Ei) to p(x) of length at least 2d−1 − 1.
Combining P3 and P4 with the edge xp(x) we have an a − b path of length at
least 2d − 1, a contradiction.

The case when Gb is 2-connected is very similar. We can obtain two paths of
length at least 2d−1− 1 in Ga and Gb = E1 if neither of the two are isomorphic
to Qd−1 and if one is isomorphic to Qd−1 we can use the same argument as in
the case where Ga is isomorphic to Qd−1 and t ≥ 2 above.

(iii) This is similar to (ii) but a little easier. Suppose that a is contained in
the interior of some endblock E of Ga. As Theorem 2.1 holds for degrees smaller
than d, E contains an a− cutv(E) path P1 of length at least 2d−1−2. Since Ga

is not 2-connected by (ii), it also contains a second endblock E′. Now E′ must
contain an exit vertex x with p(x) ̸= b for which E′ contains a cutv(E′)−x path
P3 of length at least 2d−1 − 1. Joining cutv(E) to cutv(E′) by a path P2 in Ga

and p(x) to b with a path P4 in Gb gives an a− b path P = P1P2P3xp(x)P4 of
length at least (2d−1 − 2) + 0 + (2d−1 − 1) + 1 + 1 = 2d − 1, a contradiction.

(iv) Again follows from (ii) and (iii) as in Lemma 3.5(iv).

The above modifications demonstrate the main problem in moving from the
bounds of Theorem 2.3 to bounds of Theorem 2.1 – on combining endblock
paths together without any care as before, we are usually left short a small
number of vertices. While in the above Lemma we were able to exploit some
small extremal arguments to obtain these extra vertices, such arguments do
not allow us to prove the natural analogue of Proposition 3.6. Indeed, we may
have an endblock E of Ga not isomorphic to Qd−1 and an endblock F of Gb

isomorphic to Qd−1 with cutv(E) = a and cutv(F ) = b. If there is a vertex
x ∈ int(E) at odd Hamming distance from a adjacent to a vertex y ∈ int(F ) at
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even Hamming distance from b, our induction hypothesis only allows us to find
a path of length at least (2d−1 − 1) + 1 + (2d−1 − 2) = 2d − 2 from a to b.

Now Lemma 3.6 was important in the proof Theorem 2.3. In particular, it
was used in the construction of the interaction digraph of G and crucially in
the proof of Lemma 5.2 where it guaranteed the existence of the 2-connected
subgraph J . The next proposition is a weakened version of Proposition 3.6
which will play a similar role in the proof of Theorem 2.1.

From Lemma 7.2(i) above, for every endblock E from Ga we can pick an exit
vertex xE so that E contains a cutv(E) − xE path of length at least 2d−1 − 1
and for which p(xE) /∈ {a, b}. Similarly pick such exit vertices yF for endblocks
F in Gb.

Proposition 7.3. Let G, a, b,Ga and Gb be as in the statement of Lemma 7.1.
Suppose G does not contain an a − b path of length at least 2d − 1. Then for
every endblock E of Ga, p(xE) ̸= yF for any endblock F of Gb. Furthermore, if
Body(a) ̸= {a} or Body(b) ̸= {b} we also have p(xE) /∈ int(F ).

Proof. From Lemma 7.2(iii) a /∈ int(E) and b /∈ int(F ). Suppose for contradic-
tion that p(xE) = yF . Combining the cutv(E)−xE path in E with the cutv(F )−
yF path in F guaranteed by Lemma 7.2(i) via the edge xEp(xE) = xEyF , we
have a cutv(E)−cutv(F ) path of length at least (2d−1−1)+1+(2d−1−1) = 2d−1.
As this path extends to an a− b path, we have a contradiction.

The second part is similar. Since F is 2-connected and we have dF (v) ≥ d−1
for all v ∈ F − {cutv(F ), p(xE)}, F contains a p(xE)− cutv(F ) path of length
at least 2d−1− 2. Combining this with the cutv(E)−xE path of length at least
2d−1−1 in E via the edge xEp(xE) we have a cutv(E)− cutv(F ) path of length
at least 2d − 2. If Body(a) ̸= {a} or Body(b) ̸= {b}, extending this path to an
a− b path takes at least one more edge, again giving an a− b path of length at
least 2d − 1, a contradiction.

We now look towards an slightly altered construction for H. Let our in-

teraction digraph H = {A,B,
−→
E } again be a bipartite multidigraph whose bi-

partition consists of the limbs of a and b respectively. Again we additionally
adjoin Core(a) and Core(b) to A and B respectively if they are non-empty. For
each endblock E of Ga, adjoin a directed edge to H from K ∈ A to L ∈ B if
E is an endblock of K and p(xE) ∈ L. Similarly, for each endblock F of Gb,
adjoin a directed edge to H from L ∈ B to K ∈ A if F is an endblock of L
and p(yF ) ∈ K. Note again that every limb in H has outdegree at least 1 as it
contains an endblock.

We now prove the analogue of Lemma 4.1. The original proof is compli-
cated by the fact that endblock paths can join into the interior of endblocks, as
discussed above.

Lemma 7.4. Let G, a, b,Ga and Gb be as in Lemma 7.1. Suppose that G does
not contain an a− b path of length at least 2d − 1. Then H cannot contain an
undirected path of length three.

Proof. The proof of Lemma 4.1 applies unchanged if we can guarantee that
for any endblock E of Ga or Gb, p(xE) /∈ int(F ) for any endblock F of Gb

or Ga. Using Proposition 7.3 above we can therefore focus on the case where
Body(a) = {a} and Body(b) = {b} i.e. a is a cutvertex of Ga and b is a cutvertex
of Gb.
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Suppose for contradiction that H contains a path of length at least 3. If
one of the interior vertices on this path has two out-neighbours in Q the same
argument as in the original proof will create a path between two exit vertices
in this limb which extends two endblock paths of length 2d−1 − 1. This gives a
path of length at least 2d − 2. Extending this path through Q as in Theorem
4.1 gives us an a− b path of length at least 2d−1. Similarly, if both endvertices

on this path have out-neighbours in Q (that is
−−→
V0V1 and

←−−
V2V3 are edges of Q)

we can find paths of length at least 2d−1 − 1 in both V0 and V3, which again
can be joined through Q to give an a − b path of length at least 2d − 1. This
just leaves the case of a directed path

−−→
V0V1,

−−→
V1V2 and

−−→
V2V3. (1)

While here we obtain a path of length at least 2d−1 − 1 from the edge
−−→
V0V1

as before, in V1, V2, V3 we might not be able to guarantee a full endblock path.

Indeed, there is now the possibility that the edges
−−−−→
Vi−1Vi and

−−−−→
ViVi+1 correspond

to an edge entering an endblock E by a vertex x in its interior and the other
edge leaving E by a vertex y in its interior. This does not allow us to apply
Theorem 2.1 to E as cutv(E) ∈ E −{x, y} may have degree lower than d− 1 in
E. If, however, this does not happen at one of V1 or V2 the same proof applies.

We may also assume that the exit vertex x of V2 guaranteed by
−−→
V2V3 has

p(x) /∈ int(F ) for any endblock F in the interior of an endblock of V3. Otherwise
we can find an endblock path in V0 of length at least 2d−1 − 1 and one in V3 of
length at least 2d−1 − 2. Since joining both of these through V1 and V2 joins at
least four more vertices onto these paths, we can extend them to form an a− b
path of length at least 2d + 1, more than required.

But now take any outneighour of V3 in H. Combined with our path Q above
it is easily seen we can obtain a path Q′ of length three which is either (i) not
of the form (1), or (ii) contains V3 as an interior vertex and allows for a full
endblock path to be built through it. In both cases we are done.

The following gives an analogue of Lemma 4.2. The proof from Lemma 4.2
applies unchanged, on noticing that by Proposition 7.3, exit vertices of endblocks
of Ga and Gb again cannot have partners in the interior endblocks of Gb and
Ga.

Lemma 7.5. Let G, a, b,Ga and Gb be as in the statement of Lemma 7.1.
Suppose G does not contain an a− b path of length at least 2d−1. Furthermore,
suppose that Body(a) ̸= {a}. Then no connected component of H contains two
vertices of A.

Combining Lemma 7.4 with Lemma 7.5 as in Corollary 4.3, we obtain the
following:

Corollary 7.6. Let G, a, b,Ga and Gb be as above. Suppose that G does not
contain an a− b path of length 2d− 1. Then the interaction digraph H of G has
at least two connected components, one of which C consists entirely of limbs.

Lemma 7.7. Let G, a, b,Ga and Gb be as in the statement of Lemma 7.1.
Suppose G does not contain an a− b path of length at least 2d − 1. Then taking
C as in Corollary 7.6, GC has a 2-connected subgraph J containing two vertices
a′ ∈ Ga and b′ ∈ Gb with the following properties:
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(i) every vertex v ∈ J − {a′, b′} has degree at least d − 1 in J and all the
neighbours of v in GC are contained in J

(ii) for any vertex v ∈ (J − {a′, b′}) ∩ Ga, J contains an a′ − v path not
containing b of length at least 2d−1−2. Furthermore, if v has a neigbhour
outside of J , J contains a b′ − v path not containing a of length at least
2d−1

(iii) for any vertex v ∈ (J−{a′, b′})∩Gb, J contains a b′−v path not containing
a of length at least 2d−1− 2. Furthermore, if v has a neighbour outside of
J , J contains an a′ − v path not containing b of length at least 2d−1.

Proof. The proof of this lemma is almost identical to that of Lemma 5.2 with
Lemma 7.4 and 7.5 taking the place of Lemma 4.1 and 4.2.

The only change to the argument of the proof is that in order to guarantee
that we have |Si| ≥ 2 for some i ∈ [t], we cannot now guarantee that p(xE) does
not lie in the interior of any endblock of Gb. Instead, if p(xE) ∈ F for some
endblock F of Gb, by Proposition 7.3 int(F ) contains an exit vertex yF with
p(yF ) ̸= xE . This again shows that |Si| ≥ 2 for some i ∈ [t] and therefore that
t′ ≥ 1.

The bounds in (ii) and (iii) follow from our new bounds on the length of
endblock paths. Indeed, suppose v ∈ (J −{a′, b′})∩Gb say. Both the a′−v and
b′ − v paths in Lemma 5.2(ii) contain entire endblock paths and therefore have
length at least 2d−1 − 2. This gives the bound on the b′ − v path claimed. To
obtain the a′ − v path, first note that as v has a neigbhour w outside J , by (i)
it must be outside GC . But then w must be v’s partner, i.e. w = p(v). Now in
the last paragraph of the proof of Lemma 5.2, the endblock E is on the opposite
side of J from v. But the path constructed in Lemma 5.2 combines a path from
v to E with an endblock path in E. The first of these has to have length at least
2 as p(v) /∈ E and the second has length at least 2d−1 − 2. Combining these we
obtain an a′ − v path of length at least 2d−1, as claimed.

We will now give the proof of Lemma 7.1.

Proof of Lemma 7.1. Suppose for contradiction that G does not contain an a−b
path of length at least 2d− 1. Then by Corollary 7.6 the interaction digraph H
of G contains a component C consisting entirely of limbs.

Now as G does not contain an a − b path of length at least 2d − 1, we can
apply Lemma 7.7 to find a 2-connected subgraph J of GC and vertices a′ and
b′ which satisfy Lemma 7.7 (i), (ii) and (iii). Again |J | < |G|.

Suppose first that v ∈ J − {a′, b′} has a neighbour w outside of J . Without
loss of generality take v ∈ Gb. Then w /∈ GC by Theorem 7.7(i) and so w ∈ K
for some limb K of a or w ∈ Core(a). We will first deal with the case where
w ∈ K.

If w /∈ int(E) for some endblock E of K take the w − xE path P2 in K of
length at least 2d−1 − 1 given by Lemma 7.2(i). Combining this with the path
P1 given from Lemma 7.7(ii) in J from a′ to v of length 2d−1 − 2 and the edge
xEp(xE), we have a path P1vwP2xEp(xE) from a′ to p(xE) of length at least
(2d−1 − 2) + 1 + (2d−1 − 1) + 1 = 2d − 1. But this path extends to a path from
a to b, a contradiction.

If w ∈ int(E) for some endblock E of K, we would like to combine the
Joint(K) − w path guaranteed by induction on E with the v − b′ path in J as
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given by Lemma 7.7(ii) using the edge wv. This path extends to an a− b path
but may only have length (2d−1 − 2) + 1+ (2d−1 − 2) = 2d − 3, too little for us.

Instead, look at an outneighbour of K in H. Let K ∈ C ′ for some connected
component C ′ ̸= C of H. If this is outneighbour is a limb, then C ′ must consist
entirely of limbs, by Lemma 7.5. Therefore since all limbs have at least one

outneighbour in H, C ′ contains a path of the form
←−−
KW or of the form KVW

where
←−−
VW is an edge of H. This allows us to build a path P from w to Joint(W )

of length at least 2d−1 + 1 in C ′. Combining P with an appropriate path from
Lemma 7.7(ii) via the edge vw we obtain a path that extends to an a− b path
of length at least (2d−1 − 2) + 1 + (2d−1 + 1) = 2d, as required – take this path
to be the a′ − v path if W ∈ B or the b′ − v path if W ∈ A.

If the outneighbour of K in H is instead Core(b), again using Lemma 7.7(ii)
we can find a b′− v path in J of length at least 2d−1− 2 which extends through
C ′ to give a y − b′ path P2 of length at least 2d−1, where y ∈ Body(b). Now H
must have a third connected component C ′′ containing a limb of b since b has
at least two limbs and only one element of B can lie in a component by Lemma
7.5. This component gives an a − z path P1 of length at least 2d−1 − 2 where
again z ∈ Body(b) and P1 and P2 are disjoint. As in the proof of Lemma 4.1
we can join P1 and P2 together in Core(a) with a small use of 2-connectivity
to give an a − b path of length at least 2d − 1 as required. This completes the
case when w ∈ K. The case where w ∈ Core(a) follows a similar argument,
modifying the corresponding part of the proof of Lemma 3.4.

So we can assume that no vertex v ∈ J − {a′, b′} has an edge outside J .
Then dJ (v) ≥ d for all v ∈ J − {a′, b′} and as |J | < |G| we can apply Theorem
2.1 to J to find a path of length at least 2d − 2 from a′ to b′. Moreover, unless
J is isomorphic to Qd with a′ = a and b′ = b where a and b are at even
Hamming distance J contains a path of length at least 2d − 1 between a and b,
so we may assume this is the case. Since G is not isomorphic to Qd, the graph
G′ = G[V (G)− J ∪ {a, b}] is non-empty and all v in G′ − {a, b} have degree at
least d in G′.

If a and b both have more than two limbs in G′, G′ is 2-connected. Then as
|G′| < |G| we can apply Theorem 2.1 to G′. This gives an a − b path in G′ of
length at least 2d − 1 unless G′ is isomorphic to Qd. Now if G′ was isomorphic
to Qd then J and G′ would both contain the subcube containing a and b, which
has at least four points since a and b are at even Hamming distance. But from
construction G′ and J only share a and b, so G′ is not isomorphic to Qd and
therefore contains an a− b path of length at least 2d − 1, a contradiction.

So one of a and b has exactly one limb. Let this be a say. Then G′ = GC′

for some component C ′ of H as all limbs of b must have an out-neighbour in
H. Again we can apply Theorem 7.7 to G′ to obtain a 2-connected subgraph
J̃ and vertices ã ∈ G′

a and b̃ ∈ G′
b. As in Lemma 7.7(i) for any v ∈ J̃ − {ã, b̃},

J̃ contains all neighbours of v in GC = G′. As such v can have no neighbours
in G other than those in G′ we have dJ̃(v) = dG(v) ≥ d. Theorem 2.1 holds

for J̃ taking ã and b̃ in place of a and b. This shows that J̃ contains a ã − b̃
path of length at least 2d − 2 which extends to an a − b path in G′ of length
at least 2d − 2. As above, since J and J̃ cannot both be isomorphic to Qd if a
and b are at even Hamming distance, one again must contain an a − b path of
length at least 2d− 1. This contradicts our assumption and proves the Lemma.
�
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Lastly, we show that the degree condition can again be removed.

Lemma 7.8. Let G be a 2-connected subgraph of Qn with a, b ∈ G such that
dG(a) = 2 and dG(v) ≥ d for all v ∈ V (G)− {a, b}, where d ≥ 3. Suppose that
Theorem 2.1 holds for smaller degrees and for all graphs G′ with |G′| < |G|.
Furthermore, suppose that G does not contain an a − b path of length at least
2d − 1. Then the following hold:

(i) G− a is a 2-connected graph.

(ii) There is a splitting direction i for Ga and Gb so that dGa(a) ≥ 2 or
dGb

(b) ≥ 2.

As the proof is identical to that of Lemma 6.1 we will not repeat it. We can
now finally give the proof of Theorem 2.1.

Proof of Theorem 2.1. The proof is the same as that of Theorem 2.3 up until
the construction of the interaction digraph H. Let a, a′, b, v and Ev be as in the
proof of Theorem 2.3.

We again take H to be the bipartite multidigraph H = (A′, B,
−→
E ) where

A′ = {K1, . . . ,Kr} and B = {L1, . . . , Ls}, the set of limbs of a′ in Ga and b
in Gb respectively. We also adjoin Core(b) to B if it is non-empty. Now from
Lemma 7.2(i), for each endblock E in a limb K of a, K ̸= {a, a′}, E contains
an exit vertex xE such that p(xE) ̸= b and E contains a path of length at least
2d−1− 1 from cutv(E) to xE . Pick one such exit vertex xE for each endblock E
other than {a, a′} of Ga and such an exit vertex yF for each endblock F of Gb.
Also let xEv = v. For each endblock E of Ga, E ̸= {a, a′}, adjoin a directed
edge to H from K ∈ A′ to L ∈ B if E is an endblock of K and p(xE) ∈ L.
Similarly, for each endblock F of Gb, adjoin a directed edge to H from L ∈ B
to K ∈ A′ if F is an endblock of L and p(yF ) ∈ K. Again every limb other than
{a, a′} has an outneighbour in H.

We now claim that we have a stronger analogue of Propostion 7.3 in this
case, namely:

Claim 3: p(xE) /∈ int(F ) for all endblocks E and F , E ̸= Ev.

Indeed, if this were the case, then E would contain a cutv(E)− xE path P1

of length at least 2d−1 − 1 and F would contain a p(xE)− cutv(F ) path P2 of
length at least 2d−1−2. Combining P1 and P2 with the xEp(xE) and extending
to a′ and b we have an a′− b path of length at least 2d− 2. Appending the edge
aa′ to this, G contains an a− b path of length at least 2d − 1, a contradiction.

This claim allows us to establish Lemma 7.4 and 7.5 with the same proofs as
in Lemma 4.1 and 4.2. Using this we again find a component C of H consisting
entirely of limbs and not containing {a, a′}.

Now apply Lemma 7.7 again to GC to find J with properties (i)-(iii). As a′

is the neigbhour of a, we will write aJ and bJ for the vertices of J guaranteed by
Lemma 7.7. In this J we can actually always guarantee that both of the paths
in (ii) and (iii) have length at least 2d−1. To see this, note that we can replace
Claim 1 in the proof of 5.2 with the following:

Claim 4: J − b has a 2-connected subgraph J ′ containing all of J ∩Ga and an
endblock F of Gb.
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This claim is immediate from the proof of Lemma 5.2 on noticing that, by
Claim 3, p(Si) cannot lie entirely in the interior of an endblock of Gb and so
spanGb

(Si)− {b} must contain an endblock of Gb.
Now use J ′ as in the final paragraph of the proof of Lemma 5.2 and choose

one of E or F in place of E so that v is on the opposite side of J ′ to the chosen
endblock; choose E if v ∈ Gb and F if v ∈ Ga. The path then constructed
contains an endblock path of length at least 2d−1 − 2 and a path of length at
least 2 from v to the chosen endblock. This gives the claimed path of length at
least 2d−1.

We now use this stronger fact to complete the proof. If there are no edges
from v ∈ J − {aJ , bJ} to a vertex in G− J then, by induction on Theorem 2.1,
J contains an aJ − bJ path of length at least 2d− 2. Extending this to an a′− b
path and appending the edge aa′ we obtain an a − b path of length at least
2d − 1, a contradiction.

So we can assume that some v ∈ J − {aJ , bJ} has a neighbour w outside J .
The proof can now be finished in exactly the same way as the proof of Lemma
3.4. As here we always adjoin one of the paths in J of length at least 2d−1 with
another endblock path of length at least 2d−1 − 2 via the edge vw, the a − b
path we create always has length at least 2d − 1. This contradiction proves the
Theorem. �

8 Generalizations

The reader might have noticed that we have used very little about Qn in the
proof of Theorem 2.1. The n-dimensional grid Zn is the graph whose vertex
set consists of n-tuples with entries in Z and in which two vertices x and y
are adjacent if |xi − yi| = 1 for some i ∈ [n] and xj = yj for all j ̸= i. The
next theorem extends Theorem 2.1 (and therefore Theorems 1.1 and 1.3) to
subgraphs of Zn.

Theorem 8.1. Let G be a 2-connected subgraph of Zn and a, b ∈ V (G). Suppose
that d(z) ≥ d for all z ∈ V (G) − {a, b}. Then a and b are joined by a path of
length at least 2d − 2. Furthermore unless G is isomorphic to Qd with a and b
at even Hamming distance from each other, G contains an a− b path of length
2d − 1.

Proof. The crucial property of Zn here is that we can always find a splitting
of G into two connected pieces, Ga and Gb with a ∈ Ga and b ∈ Gb such
that dGa(a) ≥ 1 and dGb

(b) ≥ 1 and all v ∈ G lose at most one neighbour
in their piece. Indeed, taking some coordinate j on which a and b differ, say
with aj > bj , let G1 be the induced subgraph of G consisting all vertices v with
vj ≥ aj and G2 be the induced subgraph of G consisting of all w for which
wj < aj . Again with the same modification to these graphs as in Lemma 2.2 we
obtain connected graphs Ga and Gb with the required degree conditions. From
here on the proof is identical to that of Theorem 2.1.

Moreover, the same proof also extends to subgraphs of the discrete torus Cn
k

provided k ≥ 4. Now we cannot expect a bound of the form C2d as above for
subgraphs of the discrete torus Cd

3 as this graph has minimum degree 2d but
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only 3d points. This shows that given a subgraph G of Cn
3 of minimal degree at

least d we cannot in general guarantee a path of length more than 3
d
2 − 1 in G.

Why does our approach not work in this case? The main reason is that we
cannot guarantee a partition into two subgraphs such that all vertices lose at
most one neighbour in their piece. Can we still guarantee an exponentially long
path in this case?

The following general result shows that we can.

Theorem 8.2. Let k ∈ N and G be a 2-connected graph with a, b ∈ V (G).
Suppose d(v) ≥ d for all v ∈ V (G) − {a, b}. Furthermore, suppose that G has
the following property:

Given any two vertices x, y ∈ G, there is a partition of V (G) into two
sets X and Y with x ∈ X and y ∈ Y such that dG[X](v) ≥ d(v)− k
for all v ∈ X and dG[Y ](v) ≥ d(v)− k for all v ∈ Y .

Then G contains an a− b path of length at least 2
d

k+2 .

Note that if the property above holds for G, it also holds for all subgraphs
of G. Also note that Theorem 1.4 immediately follows from Theorem 8.2. As
an immediate corollary of Theorem 8.2 we have the following:

Corollary 8.3. Every subgraph of Cn
3 of minimum degree at least d contains a

path of length at least 2
d
4 .

It would be interesting to decided what the correct lower bounds for the
length of the longest path in subgraphs of Cn

3 with minimum degree at least d.

Conjecture 8.4. Given a subgraph G of Cn
3 with minimum degree at least d,

G must contain a path of length at least 3
d
2 − 1.

Another consequence of Theorem 8.2 is the following result for product
graphs.

Theorem 8.5. Let G1, . . . , Gl be graphs with maximum degree at most k. Then
given any subgraph G of the Cartesian product graph

∏l
i=1 Gi of minimum degree

at least d, G contains a path of length at least 2
d

k+2 .

The proof of Theorem 8.2 is similar to that of Theorem 2.1 but shorter.

Proof. The proof is again by induction on d. It suffices to prove the result for
d ≥ k+4 as otherwise it follows from 2-connectivity. As in the proof of Theorem
2.1 we wish to split G into two subgraphs Ga and Gb with a ∈ Ga and b ∈ Gb,
which is the motivation for the above splitting property. However, simply taking
a and b in place of x and y might not be useful as both a and b can have degree
as low as two in G in which case in the partition guaranteed above a may end
up with all its neighbours in Y . Instead we pick a neighbour a′ ̸= b of a and
a neighbour b′ ̸= a of b. The fact that G is 2-connected ensures it is possible
to pick a′ ̸= b′. Now take the partition guaranteed from our splitting property
above with x = a′ and y = b′. Moving a to X and b to Y as needed we have that
dG[X](v) ≥ d(v)−k−1 for all v ∈ X−a and similarly for v ∈ Y −b. Both a and b
now have at least 1 neighbour in G[X] and G[Y ] respectively. Finally, denoting
the connected component of G[X] containing a by Ca, let Gb be the connected
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Figure 5: Cases where G′ is not 2-connected in Lemma 8.6

component of G− Ca containing b and Ga = G[V (G)− V (Gb)]. Note that Ga

and Gb are connected with a ∈ Ga, b ∈ Gb. Moreover, dGa(v) ≥ d(v) − k − 1
for all v ∈ Ga − a and dGb

(v) ≥ d(v)− k − 1 for v ∈ Gb − b.
We will again analyse the block-cutvertex decompositions of Ga and Gb.

The following lemma will be very useful below.

Lemma 8.6. Let E be an endblock of Ga or Gb with a, b /∈ int(E). Then given

any two vertices u, v ∈ int(E), G[E] contains a path of length at least 2
d−k−2
k+2

from u to v.

Proof. Look at the block-cutvertex decomposition of G′ = G[E] − cutv(E).
Since E is 2-connected (as d ≥ k + 4), G′ is connected and cutv(E) must have
a neighbour in the interior of every endblock of G′. Note that every vertex
v ∈ G′ has dG′(v) ≥ dG(v) − k − 2. In particular, since d ≥ k + 4 each
endblock F of G′ is 2-connected and has at least three vertices so that we can
by induction apply Theorem 8.2 to it. If G′ is 2-connected then by induction
on Theorem 8.2 G′ contains the desired path from u to v. Thus we may assume
that G′ is not 2-connected. If u ∈ int(F1) and v ∈ int(F2) where F1 and
F2 are two distinct endblocks of G′ then by induction on Theorem 8.2, G[F1]
and G[F2] contain u − cutv(F1) and cutv(F2) − v paths respectively, each of

length at least 2
d−k−2
k+2 . Joining cutv(F1) to cutv(F2) by a third path in G′ and

combining all three of these paths, we get a u− v path of length at least 2
d

k+2 ,
as required. Therefore since G′ contains at least two endblocks, we can assume
that one of these, say F , does not contain u or v in its interior. Contracting
int(F ) down to a single vertex in G[E], the resulting graph is still 2-connected.
Therefore, as in the proof of Lemma 5.2, G[E] contains two vertex disjoint
paths P1 and P2 from the set {u, v} to {cutv(F ), w} for some w ∈ int(F ), with
(P1 ∪P2)∩ (F −{cutv(F ), w}) = ∅. Now using induction on Theorem 8.2 in F ,

it contains a path P3 of length 2
d−k−2
k+2 from cutv(F ) to w. Piecing P1, P2 and

P3 together we obtain our desired path.

Again we have:

Proposition 8.7. Let E be an endblock of Ga not containing a and F an
endblock of Gb not containing b. Then G does not contain an edge from int(E)
to int(F )
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Figure 6: Path created in Theorem 8.2

Proof. Exactly as in Proposition 3.6.

Lemma 8.8. We have the following:

(i) Given any endblock E of Ga not containing a, there are two disjoint edges
from int(E) to Gb in G.

(ii) Ga contains an endblock not containing a.

Proof. (i) E must have an exit vertex x1, with neighbour y ∈ Gb, as G is
2-connected. If it had only one, G′ = G[E] is 2-connected and every v ∈
G′ − {x1, cutv(E)} has degree at least d. Therefore, by induction on Theorem

8.2, G′ contains a path of length at least 2
d

k+2 from x1 to cutv(E). Extending
this path from cutv(E) to a in Ga and from y to b in Gb we obtain an a−b path
of desired length. Therefore we may assume E contains a second exit vertex
x2. Now if the vertices in int(E) were only adjacent to y in Gb, x1y and x2y
must be edges of G. Then G′′ = G[E ∪ {y}] is 2-connected and dG′′(v) ≥ d for
every v ∈ G′′ − {y, cutv(E)}. By Theorem 8.2 G′′ contains a cutv(E)− y path

of length at least 2
d

k+2 . Again, extending this to a path from a to b, we have

an a− b path of length at least 2
d

k+2 . Therefore we may assume the two edges
exist or we are done.

(ii) The proof is almost identical to the proof of Lemma 3.5(ii).

Take an endblock E of Ga not containing a, as guaranteed by Lemma 8.8(ii).
We can choose E such that a and all v ∈ Ga − E not contained in the interior
of an endblock of Ga lie in the same connected component of Ga − E (e.g.
pick a block B in Ga containing a and choose E to be a block at maximum
distance from B in B(Ga)). Let x1y1 and x2y2 be the disjoint edges of G with
x1, x2 ∈ int(E) and y1, y2 ∈ Gb guaranteed by Lemma 8.8(i). By Proposition
8.7, y1, y2 /∈ int(F ) for all endblocks F of Gb not containing b in its interior.

Now looking at the block-cutvertex decomposition of Gb we can choose two
vertex disjoint paths in Gb from {y1, y2} to {b, cutv(F )} where F is some end-
block of Gb not containing b. Lets say that these paths are P3 from cutv(F ) to
y1 and P5 from y2 to b. Applying Lemma 8.8(i) to F we see that there exists
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u ∈ int(F ) adjacent to some v ∈ Ga, v ̸= cutv(E). Furthermore, by Propo-
sition 8.7 v /∈ int(E′) for any endblock E′ of Ga. From our choice of E there
exists an a − v path P1 in Ga − E. Finally by induction on Theorem 8.2, F

contains a u − cutv(F ) path P2 of length at least 2
d−k−1
k+2 and by Lemma 8.6

E contains an x1x2 path P4 of length at least 2
d−k−2
k+2 . Combining these five

paths we obtain an a − b path P = P1vuP2P3y1x1P4x2y2P5 of length at least

2
d−k−1
k+2 + 2

d−k−2
k+2 > 2

d
k+2 as required.

The cycle analogues of the above theorems can be obtained in a similar
fashion to the proof of Theorem 1.3 from Theorem 2.1.

As mentioned in the Introduction, we do not know the correct bound for
the length of the longest path in a subgraph of Qn when the minimum degree
condition in Theorem 1.1 is replaced by an average degree condition. Is the
following possible?

Conjecture 8.9. Every subgraph of Qn with average degree at least d contains
a path of length at least 2d − 1.
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